NAVAL POSTGRADUATE SCHOOL Monterey, California

EC 3550 MIDTERM EXAM II 11/92 Po

- This exam is open book and notes.
- There are three problems; each is equally weighted.
- Partial credit will be given; be sure to do some work on each problem.
- Be *sure* to include units in your answers.
- Please circle or underline your answers.
- \bullet Do NOT do any work on this sheet.
- \bullet Show ALL work.

1	
2	
3	
Total	

Name:	
name:	

1.	An surface–emitting LED couples 2 μW of power into a 62.5/125 graded–index
	optical fiber ($n_1 = 1.48$, $g = 1.8$). The LED is a Lambertian emitter that emits
	a total power of 100 μ W from an active spot that is 50 μ m in diameter.

Find n_2 of the fiber.

2. A germanium APD receiver has the operating specifications given below. It is used to detect an optical signal with a power of $10~\rm nW$ at a wavelength of $1330~\rm nm$.

Ge APD			
Parameter	Value		
\mathcal{R}_0 (A/W)	0.5		
F(M)	$M^{1.0}$		
$I_{ m dark\ bulk}\ (m nA)$	1.0		
$I_{ m dark\ surf}\ (m nA)$	0		

Preamplifier			
Parameter	Value	Load Resistor	
Noise figure (dB)	4	Resistance $(k\Omega)$	100
Noise bandwidth (MHz)	60	Noise temperature (K)	600
Voltage gain (V/V)	20		

- (a) Find the optimum value of M.
- (b) Find the signal—to—noise ratio $(in \ dB)$ for a value of M that is one-half of the optimum value.

3. As the designer of an optical–fiber link receiver, you are given a choice from three different silicon MOSFETs with the specifications of the table below.

Parameter	FET #1	FET #2	FET #3
$g_m \text{ (mS)}$	20.0	30.0	40.0
C_{gs} (pF)	1.00	0.75	0.50
C_{gd} (pF)	0.050	0.10	0.75
Γ	1.5	3.0	1.8
I_{gate} (nA)	0	0	0
$f_c (\mathrm{MHz})$	30.0	8.0	4.0

The chosen FET is to be used in integrating front–end preamp for a silicon pin diode detector. This detector has a receiving area that is 150 μ m in diameter and depletion-region height that is 12 μ m (including the height of the intrinsic material layer). (The permittivity of silicon is $\epsilon = 1.036 \times 10^{-10}$ farads/meter.) The parasitic capacitance of the receiver is $C_s = 0.1$ pF. The detector operates into a load resistor of 100 k Ω that has a noise temperature of 400 K.

The receiver is to work in a fiber link that operates at 1 Gb/s at a wavelength of 830 nm.

- (a) Which FET should you choose? (Justify your choice.)
- (b) For your chosen FET, calculate the value of the mean–square noise current of the amplifier for RZ coding.